RBSE Class 10 Mathematics — Board Exam 2024 Solutions (Part A)
Here are the solved MCQs, Fill in the blanks, and One-liner very short answer questions from the RBSE Class 10 Board Mathematics Paper (2024). Click See Answer to view solutions with explanation.
Q1 — Multiple Choice Questions (i–xv)
We know: HCF × LCM = Product of numbers.
27 × 162 = 54 × N
So, N = (27×162)/54 = 81.
Answer: 81
Solve x² − 2x − 8 = 0.
Factorise: (x−4)(x+2)=0 ⇒ x=4 or x=−2.
Answer: −2, 4
Equation: 2x = 7y − 5.
First term a=2, common difference d=3.
Tn = a + (n−1)d = 2 + (n−1)3 = 3n−1
Answer: 3n−1
Multiples: 3,6,9,12,15. Sum=45.
Answer: 45
By Pythagoras, ∠Q = 90°.
Distance = |y| = 3.
Answer: 3 units
Formula: 2 sinA cosA = sin2A.
Here: sin90°=1.
Answer: 1
tan θ = h / (h/√3) = √3 ⇒ θ=60°.
Answer: 60°
Answer: Parallel
2πr=176 ⇒ r=28 cm.
(4/3)πr³=36π ⇒ r³=27 ⇒ r=3 cm.
Numbers 0–10. Sum=55. Mean=55/11=5.
3 occurs most (5 times). Mode=3.
P(not E)=1−0.05=0.95.
Q2 — Fill in the Blanks (i–vii)
Q3 — One-liner Very Short Answers (i–x)
Proof:
Assume √5 is rational. Then √5 = p/q where p and q are integers with gcd(p,q)=1 and q ≠ 0.
√5 = p/q ⇒ 5 = p²/q² ⇒ p² = 5q²
So p² is divisible by 5 ⇒ p is divisible by 5. Let p = 5k for some integer k.
p² = (5k)² = 25k² = 5q² ⇒ q² = 5k²
Thus q² divisible by 5 ⇒ q divisible by 5. So both p and q are divisible by 5, contradicting gcd(p,q)=1.
Therefore √5 is irrational. □
Solve 2x² − x − 6 = 0 using quadratic formula:
x = [1 ± √(1 + 48)] / 4 = [1 ± √49] / 4 = [1 ± 7] / 4
So x = (1 + 7)/4 = 2 or x = (1 − 7)/4 = −6/4 = −3/2.
Zeroes: 2 and −3/2.
Let smaller number = x. Then larger = 3x. Difference: 3x − x = 26 ⇒ 2x = 26 ⇒ x = 13.
Numbers: 13 and 39.
Because DE ∥ BC, triangles ADE and ABC are similar. So corresponding sides are proportional:
AD/AB = AE/AC
Compute AB = AD + DB = x + (x − 2) = 2x − 2 and AC = AE + EC = (x + 2) + (x − 1) = 2x + 1.
x / (2x − 2) = (x + 2) / (2x + 1)
Cross-multiply:
x(2x + 1) = (x + 2)(2x − 2)
Left: 2x² + x. Right: (x + 2)(2x − 2) = 2x² + 2x − 4.
Equate: 2x² + x = 2x² + 2x − 4 ⇒ x = 4.
x = 4 (check lengths positive).
Use distance formula:
√[(x − 5)² + (3 − 7)²] = 5
Square both sides: (x − 5)² + (−4)² = 25 ⇒ (x − 5)² + 16 = 25 ⇒ (x − 5)² = 9.
So x − 5 = ±3 ⇒ x = 8 or x = 2.
tan A = 1 ⇒ A = 45° (principal). Then 2 sin A cos A = sin 2A = sin 90° = 1.
Answer: 1.
Let horizontal distance between bases = d. Vertical difference = 20 − 14 = 6 m. The wire connecting the tops makes 30° with horizontal:
tan 30° = (vertical difference) / d = 6 / d ⇒ d = 6 / tan30° = 6 / (1/√3) = 6√3
Length of wire L = √(d² + (vertical difference)²) = √((6√3)² + 6²) = √(108 + 36) = √144 = 12 m.
Wire length = 12 m.
Let O be center, distance from O to chord = radius of smaller circle = 3 cm. Let half chord = x. For larger circle radius 5:
5² = 3² + x² ⇒ x² = 25 − 9 = 16 ⇒ x = 4
Chord length = 2x = 8 cm.
Area of sector = (θ/360) × πr² = (60/360) × π × 21² = (1/6) × π × 441 = 73.5π cm².
Using π = 22/7 numeric: 73.5 × 22/7 = 231 cm².
Area = 73.5π cm² (exact) = 231 cm² (π ≈ 22/7).
Base area = πr² = 154 ⇒ r² = (154 × 7) / 22 = 49 ⇒ r = 7 cm.
Curved surface area (CSA) = 2πrh = 2π × 7 × 15 = 210π cm².
Numerical (π = 22/7): 210 × 22/7 = 660 cm².
Compute Σf and Σfx:
Σf = 8+6+12+7+5+6 = 44 Σfx = 5×8 + 6×6 + 7×12 + 8×7 + 9×5 + 10×6 = 321
Mean = Σfx / Σf = 321 / 44 ≈ 7.295454... ≈ 7.30.
Total faces = 6. A appears 2 times ⇒ P(A) = 2/6 = 1/3. D appears once ⇒ P(D) = 1/6.
Smallest multiple of 4 greater than 10 is 12. Largest multiple ≤ 250 is 248.
Sequence: 12,16,...,248 with a = 12, d = 4. Let n be number of terms:
12 + (n−1)4 = 248 ⇒ (n−1)4 = 236 ⇒ n−1 = 59 ⇒ n = 60
60 multiples.
Diagonals of a parallelogram bisect each other. Midpoint of AC = midpoint of BD.
Midpoint AC = ((6+9)/2, (1+4)/2) = (15/2, 5/2) Midpoint BD = ((8+p)/2, (2+3)/2) = ((8+p)/2, 5/2)
Equate x-coordinates: 15/2 = (8+p)/2 ⇒ 15 = 8 + p ⇒ p = 7.
If a circle is inscribed in a parallelogram, tangents from a vertex are equal. Let tangent lengths around be x,y,z,w in order. Then sides are:
AB = x+y, BC = y+z, CD = z+w, DA = w+x
Parallelogram ⇒ AB = CD and BC = DA ⇒ x+y = z+w and y+z = w+x. Subtract one from the other:
(x+y) − (y+z) = (z+w) − (w+x) ⇒ x − z = z − x ⇒ 2x = 2z ⇒ x = z
Similarly y = w. Thus AB = x+y and BC = y+x ⇒ AB = BC ⇒ all sides equal. Hence parallelogram with equal sides is a rhombus.
Total frequency N = 4+28+42+20+6 = 100. N/2 = 50. Cumulative frequencies: 4, 32, 74, ... So median class = 20–30.
For class 20–30: l = 20, h = 10, f = 42, c.f. before = 32.
Median = l + [(N/2 − c.f.before)/f] × h = 20 + [(50 − 32)/42] × 10 = 20 + (18/42)×10 = 20 + (3/7)×10 = 20 + 30/7 = 20 + 4.2857 = 24.2857
Median ≈ 24.29.
Let base = b and altitude = b − 7. By Pythagoras:
b² + (b − 7)² = 13² = 169
⇒ b² + b² − 14b + 49 = 169 ⇒ 2b² − 14b − 120 = 0 ⇒ b² − 7b − 60 = 0.
Solve: b = [7 ± √(49 + 240)]/2 = [7 ± √289]/2 = [7 ± 17]/2. Positive root: (7 + 17)/2 = 12.
So base = 12 cm, altitude = 12 − 7 = 5 cm. (Check: 5² + 12² = 25 + 144 = 169 = 13².)
Rewrite each term in sin/cos:
cosec A − sin A = (1/sin A) − sin A = (1 − sin²A)/sin A = cos²A / sin A sec A − cos A = (1/cos A) − cos A = (1 − cos²A)/cos A = sin²A / cos A tan A + cot A = (sin A / cos A) + (cos A / sin A) = (sin²A + cos²A)/(sin A cos A) = 1/(sin A cos A)
Multiply all three:
(cos²A / sin A) × (sin²A / cos A) × (1/(sin A cos A)) = (cos²A · sin²A) / (sin A · cos A · sin A · cos A) = 1
Hence the identity is proved.
Mid-points x: 2.5, 7.5, 12.5, 17.5, 22.5, 27.5. Frequencies f: 3,7,15,24,16,5. Total f = 70. Take A = 17.5.
Compute d = x − A: −15, −10, −5, 0, 5, 10 (note these are in units of 1 but correspond to midpoints shifted by 17.5; alternatively use d in original units: −15, −10, −5, 0, 5, 10).
Σf d = 3(−15) + 7(−10) + 15(−5) + 24(0) + 16(5) + 5(10) = −45 −70 −75 + 0 + 80 + 50 = −60
Mean = A + (Σf d) / Σf = 17.5 + (−60)/70 = 17.5 − 6/7 ≈ 17.5 − 0.85714 = 16.64286 ≈ 16.64.
